30 research outputs found

    Homotopy locally presentable enriched categories

    Full text link
    We develop a homotopy theory of categories enriched in a monoidal model category V. In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. The main result, which was known for simplicially-enriched categories, links homotopy locally presentable V-categories with combinatorial model V-categories, in the case where has all objects of V are cofibrant.Comment: 48 pages. Significant changes in v2, especially in the last sectio

    Abstract elementary classes and accessible categories

    Get PDF
    We compare abstract elementary classes of Shelah with accessible categories having directed colimits

    Strongly Complete Logics for Coalgebras

    Get PDF
    Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts. Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the category of algebras for the functor is obtained compositionally from the presentations of the underlying category and of the functor. Part II investigates algebras for a functor over ind-completions and extends the theorem of J{\'o}nsson and Tarski on canonical extensions of Boolean algebras with operators to this setting. Part III shows, based on Part I, how to associate a finitary logic to any finite-sets preserving functor T. Based on Part II we prove the logic to be strongly complete under a reasonable condition on T

    Tameness in generalized metric structures

    Full text link
    We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections to classes of fuzzy structures, and structures on sheaves

    Notions of Lawvere theory

    Full text link
    Categorical universal algebra can be developed either using Lawvere theories (single-sorted finite product theories) or using monads, and the category of Lawvere theories is equivalent to the category of finitary monads on Set. We show how this equivalence, and the basic results of universal algebra, can be generalized in three ways: replacing Set by another category, working in an enriched setting, and by working with another class of limits than finite products. An important special case involves working with sifted-colimit-preserving monads rather than filtered-colimit-preserving ones.Comment: 27 pages. v2 minor changes, final version, to appear in Applied Categorical Structure
    corecore